Intel Performance Tuning Protection Plan

Purchased Intel Performance Tuning Protection Plan for the i7 5930K. Now running at 4.5Ghz with memory at 3K. Running on a Corsair Hydro Series H110i GT ! ...

Guild Wars 2 - Bringing Antialiasing to the game

It's no surprise seeing another game slam onto the market lacking AA (Anti-Aliasing) features and Guild Wars 2 is no exception. MMORPG games tend to get...

Syfy's Defiance game Beta Screenshots

Below are a few screenshots from the upcoming Syfy "Defiance" game coming out on April 2, 2013. Defiance is a first of its kind where the game will be in close...

Steam Box, Steam for Linux

Valve has made one of its first steps toward a "Steam Box." Steam for Linux has been released today for Linux's operating system Ubuntu; complete with a...

Lowering game latency with WTFast tunneling

Taking a dive into WTFast  latency tunneling service -- is like your internet on steroids. Internet latency is a gamers worst nightmare. Any network...

Logitech G13 Advanced Gameboard

The G13 Advanced Gameboard is Logitech’s answer to gamers needs. It’s a fantastic light-weight, portable alternative for gamers who don’t want...

Rosewill Thor V2 Computer Case

Rosewill , the company behind quality hardware and affordable cases, debuted the redesigned Thor-V2 case earlier this year and has since become one of the...

Electronic Arts: Battlefield 3

As one of the most anticipated games released by EA (Electronic Arts), Battlefield 3 sets itself apart from its rivals with a great story-line and game play....

Dark discovery could double solar cell efficiency

The efficiency of solar cells could be doubled by the discovery of a quantum “shadow state” that allows two – rather than one – high-energy electrons to be produced by optoelectronic energy conversion. The latest research on the mechanisms of solar energy conversion was led by chemistry Professor Xiaoyang Zhu at The University of Texas at Austin and was published in Science magazine.

Professor Xiaoyang Zhu
Professor Xiaoyang Zhu

Zhu and his team have discovered that it’s possible to double the number of electrons harvested from one photon of sunlight using pentacene, an organic plastic semiconductor material.

“Plastic semiconductor solar cell production has great advantages, one of which is low cost,” said Zhu, in a statement. “Combined with the vast capabilities for molecular design and synthesis, our discovery opens the door to an exciting new approach for solar energy conversion, leading to much higher efficiencies.”

The maximum theoretical efficiency of the silicon solar cell in use today is approximately 31 percent. This is because much of the photonic energy hitting the cell is not that at wavelengths that can be turned into usable electricity. That energy is instead lost as heat. Capturing the thermally excited hot electronic energy could potentially increase the efficiency of solar-to-electric power conversion to as high as 66 percent, according to the research team.

Zhu and his team previously demonstrated that those hot electrons could be captured using semiconductor nanocrystals. They published that research in Science in 2010, but Zhu says the actual implementation of a viable technology based on that research is very challenging. The primary one being that it requires focused sunlight rather than ambient light that typically hits a solar panel.

Zhu and his team have found an alternative. They discovered that in the semiconductor pentacene a photon produces a dark quantum “shadow state” from which two electrons can then be efficiently captured to generate more energy.

The absorption of a photon creates an excited electron-hole pair, called an exciton. The exciton is coupled quantum mechanically to a dark “shadow-state” called a multi-exciton. It so happens that the multi-exciton can be an efficient source of two electrons via transfer to an electron acceptor material such as fullerene, the ball-shaped 60-atom allotrope of carbon, which was used in the study. Exploiting this could raise pentacene solar cell efficiency to 44 percent without the need for a focused solar beam, according to the researchers.

The research team was led by Wai-lun Chan, a postdoctoral fellow in Zhu’s group, with the help of postdoctoral fellows Manuel Ligges, Askat Jailaubekov, Loren Kaake and Luis Miaja-Avila.

via University of Texas




Categories: Latest News, Top 10 Headlines.